COMP151101 
	Introduction to Discrete Mathematics 
	May/June 2018
	Question 1 
	Let S be the set of all sequences of length 5 whose elements are letters of the English alphabet.
	
		
			| 
					(a) How many sequences does S contain? 
				 | 
					[3 marks] 
				 | 
		
			| 
					(b) How many sequences from S consist of letters that are all different? 
				 | 
					[3 marks] 
				 | 
		
			| 
					(c) How many sequences from S do not start with A and end with B? 
				 | 
					[3 marks] 
				 | 
	
	[question 1 total: 9 marks] 
	Question 2 
	Consider distributing 28 identical balls into 8 distinct boxes numbered 1, . . . , 8.
	(a)  In how many ways can this be done? [3 marks] 
	(b) What is the number of such distributions in which for every i ∈ {1, 2, 3, 4}, box i receives at least i balls? [3 marks] 
	(c) What is the number of such distributions in which all boxes receive an even number of balls? [3 marks] 
	[question 2 total: 9 marks] 
	Question 3 
	(a) What is the coefficient of x4y3 when the expression (2x - y)7  is expanded? [3 marks] 
	(b) What is the coefficient of x4y3 when the expression (x+y +2)9 is expanded? [3 marks] 
	[question 3 total: 6 marks]
	Question 4 
	An experiment consists of two fair, different coloured dice being rolled (the dice are 6-sided and the sides show numbers 1, . . . , 6). Let A be the event that the two dice are both showing numbers that are greater than 3, and let B be the event that the sum of the numbers shown on the two dice is 8.
	(a) What is the probability of A? [3 marks] 
	(b) What is the probability of B? [3 marks] 
	(c) What is the probability of A ∩ B? [3 marks] 
	(d) Are the events A and B independent? (You must justify your answer!) [3 marks] 
	[question 4 total: 12 marks] 
	Question 5 
	(a)  Define the following (you may use terms graph, vertex, edge and path without defining them):
	• a connected graph;
	• a cycle;
	• a cut-edge.
	[6 marks] 
	(b)  Let G be a connected graph.  Prove that an edge e of G is not a cut-edge if and only if it belongs to a cycle.
	In your proof you may use the following lemma (that you do not need to prove).
	Lemma: Let G be a graph and u and v two vertices of G. There is a path from u to v in G if and only if there is a simple path from u to v in G.  [6 marks] 
	[question 5 total: 12 marks] 
	[grand total: 48 marks]