Homework 6
Problem 1 (6 points)
Shortest paths can be cast as an LP using distances dv from the source s to a particular vertex v as variables.
•We can compute the shortest path from s to t in a weighted directed graph by solving. 
Use linear programming to answer the questions below.  State the objective function and constraints for each problem and include a copy of the LP code and output. 
a)Find the distance of the shortest path from vertex 0 to vertex 7 in the graph below. 
b)Find the distances of the shortest paths from vertex 0 to all other vertices.  
Acme Industries produces four types of men’s ties using three types of material.  Your job is to determine how many of each type of tie to make each month.  The goal is to maximize profit, profit per tie = selling price - labor cost – material cost. Labor cost is $0.75 per tie for all four types of ties.  The material requirements and costs are given below. 
Material 	Cost per yard 	Yards available per month 
Silk 	$20 	1,000 
Polyester 	$6 	2,000 
Cotton 	$9 	1,250 
Product Information 	Type of Tie 		
Silk = s 	Poly = p 	Blend1 =  b 	Blend2 = c 
Selling Price per tie 	$6.70 	$3.55 	$4.31 	$4.81 
Monthly Minimum units 	6,000 	10,000 	13,000 	6,000 
Monthly Maximum units 	7,000 	14,000 	16,000 	8,500 
Material 
Information in yards 		Type of Tie 	
Silk 	Polyester 	Blend 1 (50/50) 	Blend 2 (30/70) 
Silk 	0.125 	0 	0 	0 
Polyester 	0 	0.08 	0.05 	0.03 
Cotton 	0 	0 	0.05 	0.07 
Formulate the problem as a linear program with an objective function and all constraints. Determine the optimal solution for the linear program using any software you want.  Include a copy of the code and output. What are the optimal numbers of ties of each type to maximize profit?
Problem 3	(12 points)
Veronica the owner of Very Veggie Vegeria is creating a new healthy salad that is low in calories but meets certain nutritional requirements.  A salad is any combination of the following ingredients:  Tomato, Lettuce, Spinach, Carrot, Smoked Tofu, Sunflower Seeds, Chickpeas, Oil.
Each salad must contain: 
•At least 15 grams of protein
•At least 2 and at most 8 grams of fat
•At least 4 grams of carbohydrates
•At most 200 milligrams of sodium
•At least 40% leafy greens (lettuce and spinach) by mass.
The nutritional contents of these ingredients (per 100 grams) and cost are 
Ingredient 	Energy 
(cal) 	Protein 
(grams) 	Fat (grams) 	Carbohydrate (grams) 	Sodium (mg) 	Cost  (100g) 
Tomato 	21 	0.85 	0.33 	4.64 	9.00 	$1.00 
Lettuce 	16 	1.62 	0.20 	2.37 	28.00 	$0.75 
Spinach 	40 	2.86 	0.39 	3.63 	65.00 	$0.50 
Carrot 	41 	0.93 	0.24 	9.58 	69.00 	$0.50 
Sunflower Seeds 	585 	23.4 	48.7 	15.00 	3.80 	$0.45 
Smoked Tofu 	120 	16.00 	5.00 	3.00 	120.00 	$2.15 
Chickpeas 	164 	9.00 	2.6 	27.0 	78.00 	$0.95 
Oil 	884 	0 	100.00 	0 	0 	$2.00 
Part A:  Determine the combination of ingredients that minimizes calories but meets all nutritional requirements. 
i.Formulate the problem as a linear program with an objective function and all constraints. 
ii.Determine the optimal solution for the linear program using any software you want.  Include a copy of the code/file in the report. 
iii.What is the cost of the low calorie salad? 
Part B:   Veronica realizes that it is also important to minimize the cost associated with the new salad.  Unfortunately some of the ingredients can be expensive.  Determine the combination of ingredients that minimizes cost. 
i.Formulate the problem as a linear program with an objective function and all constraints. 
ii.Determine the optimal solution for the linear program using any software you want.  Include a copy of the code/file in the report. 
iii.How many calories are in the low cost salad?
Problem 4	(6 points)
This is an extension of the transportation model (lecture notes: slides 52-55).  There are now intermediate transshipment points added between the sources (plants) and destinations (retailers).  Items being shipped from a Plant (pi) must be shipped to a Warehouse (wj) before being shipped to the Retailer (rk).  Each Plant will have an associated supply (si) and each Retailer will have a demand (dk).  The number of plants is n, number of warehouses is q and the number of retailers is m.  The edges (i,j) from plant (pi) to warehouse (wj) have costs associated denoted cp(i,j).  The edges (j,k) from a warehouse (wj) to a retailer (rk) have costs associated denoted cw(j,k). 
The graph below shows the transshipment map for a manufacturer of refrigerators.  Refrigerators are produced at four plants and then shipped to a warehouse (weekly) before going to the retailer. 
Below are the costs of shipping from a plant to a warehouse and then a warehouse to a retailer.  If it is impossible to ship between the two locations an X is placed in the table. 
Determine the number of refrigerators to be shipped from the plants to the warehouses and then from the warehouses to retailers to minimize the cost.  Formulate the problem as a linear program with an objective function and all constraints.  Determine the optimal solution for the linear program using any software you want.  What are the optimal shipping routes and minimum cost?
Note:
You may solve the problems using your choice of software, State which software package(s)/language(s) you used, and provide the code or spreadsheet.
Upload one PDF file (only PDF) to Canvas. Please include the code in your pdf. If you use Excel, then submit your Excel file(s), too.
There is no submission to TEACH this week.